

ShriShankaracharya Group of Institutions (An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai) SCHEME OF EXAMINATION AND SYLLABUS

SEMESTER 1, MTech, MECHANICAL(THERMAL ENGINEERING)

	Effective from the Session 2020-2021(Revised)												
S. No.	Board of Study	Sub. Code	SUBJECT	PE PEI	PERIODS PER WEEK		PERIODS PER WEEK		<u>SCHEME OF</u> <u>EXAM</u> Theory/Practical		<u>OF</u> tical	TOTAL MARKS	Credit L+(T+P)
	_			L	Т	Р	ESE	СТ	ТА		/2		
1.	Mechanical Engg	ME229101	Advanced Mathematical Methods	3	2	-	100	20	20	140	4		
2.	Mechanical Engg	ME229102	Advanced Thermodynamics	3	2	-	100	20	20	140	4		
3.	Mechanical Engg	ME229103	Advance Fluid Mechanics	3	2	-	100	20	20	140	4		
4.	Mechanical Engg	ME229104	Advanced Heat Transfer	3	2	-	100	20	20	140	4		
5.	Elective-I			3	2	-	100	-	20	140	4		
6.	Mechanical Engg	ME229191	Experiments in Thermal Engineering Lab 1	-	-	4	75	-	75	150	2		
7.	Mechanical Engg	ME229192	Experiments in Thermal Engineering Lab 2	-	-	4	75	-	75	150	2		
			Total	15	10	8	650	100	250	1000	24		

L-Lecture, T-Tutorial, P-Practical, ESE, End Semester Exam, CT, Class Test TA - Teacher's Assessment

List of Electives-I

	Elective I						
S No.	Board of Study	Subject Code	Subject				
1	Mechanical Engg.	ME229121	Design of Heat Exchangers				
2	Mechanical Engg.	ME229122	Advanced Finite Element Method				
3	Mechanical Engg.	ME229123	Advanced I.C. Engines Technology				
4	Mechanical Engg.	ME229124	Non-Conventional Energy Systems.				
5	Mechanical Engg.	ME229125	Solar Energy Utilization				
6	Mechanical Engg.	ME229126	Power Plant Engineering				

		October 2020	1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2020-21 Onwards

ShriShankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai) SCHEME OF EXAMINATION AND SYLLABUS

SEMESTER 1, MTech, MECHANICAL (THERMAL ENGINEERING)

Subject Name & Code	Advanced Mathematical Methods ME229101	L = 3	T = 2	$\mathbf{P} = 0$	Credits = 4
Evaluation Calorea	ESE	СТ	ТА	Total	ESE Duration
Evaluation Scheme	100	20	20	140	3 Hours

Co	ourse Objectives	Course Outcomes
		At the end of this course, the students are
		expected to be able to:
1.	To impart solution techniques to solve linear	
	and non-linear algebraic equations.	CO1: Apply the methods for solving linear algebraic equations.
		CO2: Apply the methods for solving non-linear algebraic
2.	To provide exposure to solve engineering	equations.
	problems involving differential equations	CO3: Apply the methods to solve numerical differentiation and
		integration problems.
		CO4: Apply the methods for solving ordinary and partial
		differential equations.
		CO5:Design and develop computer programs for the various
		numerical methods to solve engineering problems

Unit-1 Solution of linear algebraic systems: Non-iterative method, Gauss elimination method, LUfactorization method, Matrix inversion method. Iterative method, Gauss Seidel iterative method, Jacobi method, ill -conditioning problems, Tridiagonalization, Hoseholder's method, QR-factorization. [CO 1, 10 Hrs.]

Unit-2 Solution of non-linear algebraic systems: Solution of equations by iterations, Fixed point iterations, Newton's method, Secant method, Bi-section method. [CO 2, 9 Hrs.]

Unit-3 Numerical differentiation: Methods for first order ODEs, Euler method, Runge-Kutta methods, Methods for higher order and systems of ODEs, Euler method, Runge-Kutta methods, Stiff systems.
 Numerical integration: Trapezoidal rule, Simpson's 1/3 rule, Simpson's 3/8 rule. Numerical double integration.

Unit-4 Introduction to partial differential equations: 1ST Order PDEs, Mathematical classification second order PDEs, Characteristics. Finite Difference Methods: Different discretization techniques of PDE equations, Backward, forward and central differencing discretization schemes, Euler's explicit, implicit and semi-implicit methods. [CO 4, 10 Hrs.]

Unit-5 Applications to model problems: Parabolic equations, heat equations, Elliptic equations, Laplace and Poisson's equations. Dirichlet problems, ADI method, Neumann and Mixed

		October 2020	1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2020-21 Onwards

ShriShankaracharya Group of Institutions (An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai) SCHEME OF EXAMINATION AND SYLLABUS

SEMESTER 1, MTech, MECHANICAL(THERMAL ENGINEERING)

problems, Hyperbolic equation, wave equation, Upwinding differencing scheme of [CO 5, 9 Hrs.] advection terms.

Text Books:

S. No.	Title	Author(s)	Publisher
1.	Introductory Methods of Numerical Analysis	S. S. Sastry	4th Edition, Prentice Hall of India Pvt Ltd
2.	Advanced Engineering Mathematics	E. Kreyszig	Willey Publication
3.	Numerical Methods for Scientist and Engineers	R. W. Hamming	

S. No	Title	Author(s)	Publisher
1.	Numerical Solution of Partial Differential Equations	G. D. Smith	Oxford University Press, 1985.
2.	Introduction to Numerical Analysis	F. B. Hildebrand	
3.	Fundamentals of Engineering Numerical Analysis	1. P. Moin	

		October 2020	1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2020-21 Onwards

ShriShankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai) SCHEME OF EXAMINATION AND SYLLABUS

Subject Name & Code	ADVANCED THERMODYNAMICS ME229102	L = 3	T = 2	$\mathbf{P} = 0$	Credits = 4
	ESE	СТ	ТА	Total	ESE Duration
Evaluation Scheme	100	20	20	140	3 Hours

Course Objectives	Course Outcomes
To enable students: To apply basics thermodynamic concepts and enable to use thermodynamic relations. To A nalyze concept of entropy, exergy, real gases, ideal gases in detail.	 On successful completion of the course, the student will be able to: CO1Apply the basics of thermodynamics and able to use thermodynamic relations. CO2 Analyze concept of entropy, exergy, real gases, ideal gases in detail.
To Evaluate the thermodynamic systems in engineering for the needs in advanced thermodynamics	CO3 Evaluate the thermodynamic systems in engineering for the needs in advanced thermodynamics

- **Unit 1** Review of I & II laws of thermodynamics, transient flow analysis, entropy balance, entropy generation. Exergy Analysis, concepts, exergy balance, exergy transfer, exergetic efficiency, exergy analysis of power and refrigeration cycles. **C01, C02 [7 Hrs.]**
- Unit 2 Real Gases and mixtures, equations of state, thermodynamic property relations, residual property functions, properties of saturation states.CO1, [7 Hrs.]
- Unit 3 Thermodynamic properties of homogeneous mixtures, partial molal properties, chemical potential, fugacity and fugacity coefficient, fugacity relations for real gas mixtures, ideal solutions, phase equilibrium, Rault's law CO1, [7 Hrs.]
- **Unit 4** Reacting Systems, I and II law analysis of reacting systems, absolute entropy and the third law, fuel cells, chemical energy, Exergetic efficiency of reacting systems, Chemical equilibrium, equilibrium flame temperature.**CO3**, [7 Hrs.]
- Unit 5 StatisticalMechanics:Maxwell-BoltzmanStatistics,microstate&Macrostate,Thermodynamic probability.CO1, [7 Hrs.]

		October 2020	1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2020-21 Onwards

ShriShankaracharya Group of Institutions (An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai) SCHEME OF EXAMINATION AND SYLLABUS

SEMESTER 1, MTech, MECHANICAL(THERMAL ENGINEERING)

Text B	ext Books:							
	S. No.	Title	Author(s)	Publisher				
	1.	Advanced Thermodynamic for Engineers	Wark K	John Wiley & Sons Inc. 1995				
	2.	Advanced Engineering Thermodynamics	Bejan A.,	John Wiley & Sons Inc.1988				

S. No	Title	Author(s)	Publisher
1.	Advaced Engineering Thermodynamics	Annamalai K. &Puri	CRC Press,2001
2.	Thermal Design & Optimization	John Wiley & Sons,1996	John Wiley & Sons,1996
3.	Fundamentals of Engineering Thermodynamics	Moran M.J. a& Shapiro H.N	John Wiley & Sons Inc.,1992

		October 2020	1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2020-21 Onwards

ShriShankaracharya Group of Institutions (An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai) SCHEME OF EXAMINATION AND SYLLABUS

Subject Name & Code	ADVANCED FLUIDMECHANICS ME229103	L = 3	T = 2	$\mathbf{P} = 0$	Credits = 4
	ESE	СТ	ТА	Total	ESE Duration
Evaluation Scheme	100	20	20	140	3 Hours

Course Objectives				Course Outcomes			
To Understand	d		O	n successful co	mpletion of the c	ourse, the student will be	
• The basic co	ncepts	s in	ab	le to:			
computation	computationalfluiddynamics.			1 Apply basic	principles of fluid	mechanics to solve real	
				life engineerii	ng problems		
• Understand	the ba	sic elements in the use of		C			
thermal simu	ulatior	1.		• • • • •			
				2 Analyze the f	luid dynamic syst	ems by using modern	
• For a given p	proble	m, be able to determine t	he	tools and te	ecnniques.		
appropriate differential equations of motion,			1,				
initial conditi	tions,	and boundary conditions.	CO)3 Evaluate fl	luid systems for pe	erformance as per the	
The 4.1 Decision of herican and a second				desired nee	eds based on indus	trial needs	
Unit 1	Rev1	ew of basic concept, con	cept of c	ontinuum, type	of fluids, tensor a	analysis. Basic laws in	
	form	and their applications. C	01 [7Hrs		inclituin and cherg	y equations in integral	
	10111	and then approximations of	0 - []			
Unit 2	Diffe	erential fluid flow anal	ysis, con	tinuity equatio	n. Navier-Stokes	equations and exact	
	solut	ions, energy equation.CO	02 [7Hrs	.]			
	.					1 1 1	
Unit 3	Ideal	fluid flow analysis, f	wo dime	ensional flow	in rectangular a	nd polar coordinates;	
	conti	nuity equation and the st	ream fun	ction; irrotation	ality and the velo	city potential function;	
	voru	lation: plane potential fl	e potentia	he complex point	tential function S	ources sinks doublets	
	and y	vortices. Flow over bodie	\mathbf{D} w and \mathbf{D}	lembert's para	dox: aerofoil theory	ry and its application	
CO3 [8]	Hrs.]			nemoert s para		ry and its application.	
Unit 4	Low	Reynolds no. flow, app	oroximati	on of N-S equa	ation, approximat	e solutions of Navier-	
	Stok	es equation, Stokes an	d Oseen	flows, hydro	dynamic theory	of lubrication. Large	
	Reyr	nolds number flow ap	proximat	ion, Prandtl's	boundary layer	equations, Blausius	
	solut	ions,Falkner-Skansolutio	ns,mome	ntumintegraleq	uation,Halsteinand	lBohlenmethod,	
	therr	nal boundarylayers.CO4	[8Hrs.]				
		a	~ ··				
Unit5	1	Compressible fluid flow,	Onedime	nsionalisentropi	cflow,FannoandR	ayleighflows,chocking	
	phen	omenon, normal and obli	ique shoc	KSCO4 [5Hrs.]			
			<u> </u>	2020	1.00		
			Octob	ber 2020	1.00	Applicable for AY	
Chairman			-			2020-21 Onwards	
(AC)		Chairman (BoS)	Date o	t Release	Version		

ShriShankaracharya Group of Institutions (An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai) SCHEME OF EXAMINATION AND SYLLABUS

SEMESTER 1, MTech, MECHANICAL(THERMAL ENGINEERING)

Text Books

~								
	S. No.	Title	Author(s)	Publisher				
	1.	Fluid Mechanics	Kundu P.K. and Cohen I. M.	3 rd Edition, Academic Press (Indian reprint),2004				
	2.	Advanced Engineering Fluid Mechanics	Murlidhar K. and Biswas G	2 nd Edn., Narosa Pub.,2005				
	3	Foundation of Fluid Mechanics	Yuan S.W	Prentice Hall,1968				

S. No	Title	Author(s)	Publisher
1	Boundary Layer Theory	Schlichting H and Gersten K	8 th Edn., Springer,2001
2	Introduction to Fluid dynamics	Batchlor G.K	Cambridge,2000
3	Viscous Fluid Flow	White F.M,	McGraw Hill,2006
4	Fundamentals of Fluid Mechanics	Munson B.R, Young D.F &Okiishi T.H	5 th Edn., Wiley,2006

		October 2020	1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2020-21 Onwards

ShriShankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai) SCHEME OF EXAMINATION AND SYLLABUS

SEMESTER 1, MTech, MECHANICAL(THERMAL ENGINEERING)

Subject Name Code	&	ADVANCEDHEATTRA ME229104	ANSFE	R	L = 3	T = 2	P = 0	Credits = 4
Evaluation Scheme		ESE			СТ	ТА	Total	ESE Duration
		100			20	20	140	3 Hours
Course Objectives			Cours	e Out	comes			
To enable Students to :			On successful completion of the course, the student will be able to:					
 Understand and formulate, mathematical models related to Heat transfer Analyze heat transfer in complex systems 			CO1 Formulation of the mathematical models of heat transfer Problems					
• Design and justify the thermal systems for different socio economic aspects.			CO2 Analyze heat transfer in complex systems					
			CO3 socio e	Desig conon	n and justi	fy the th s.	ermal sys	tems for different
Unit 1 Heat conduction: General Equation; boundary & initial conditions, radial fins & fin optimization, transient heat conduction, moving boundaries & moving heat sources problems analysis, ablation heat transfer.CO1 [7 Hrs.]				& fin purces problems				

Unit 2 Heat Convection:Boundary layers concepts, laminar & turbulent flows, conservation equation, non-dimensional analysis, B.L. equations, internal and external forced convection, Reynolds Analogy.CO2 [7 Hrs.]

Unit 3 Natural convection: combined free and forced convection; combined convection and radiation. CO3 [7 Hrs.]

Unit 4 Condensation and Boiling, Heat pipes.CO4 [6 Hrs.]

Unit 5 Thermal Radiation: Poljack's and Gehbart'smethods, and view factor Radiation in Enclosures with absorbing and emitting media, Flame Radiation, Solar Radiion.CO4 [6 Hrs.]

S. No.	Title	Author(s)	Publisher	
1.	Principles of Heat Transfer	Kreith, Frank, Bohn, M.S	6 th Edn, Brooks Cole Pub. Co.,2000	
2.	Momentum, Heat and Mass Transfer Fundamentals	Kesseler D and Greenkorn RA,	Marcel Dekker, Incl.,1999	
3.	Introduction to Heat Transfer	Arpaci V.S., Kao S.H. and Selamet A	Prentice Hall,2000	

		October 2020	1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2020-21 Onwards

ShriShankaracharya Group of Institutions (An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai) SCHEME OF EXAMINATION AND SYLLABUS

SEMESTER 1, MTech, MECHANICAL (THERMAL ENGINEERING)

S. No	Title	Author(s)	Publisher
1	Burmeister LC	Convective Heat Transfer	John Wiley & Sons Inc.,1983
2	Kays W.M., Crawford M.E. and Weigand B	Convective Heat and Mass Transfer	Tata McGraw Hill, 5
3	Ozisik M.N	Heat Conduction	John Wiley & Sons Inc.,1980
4	Siegel R and Howell J.K	Thermal Radiation Heat Transfer	Taylor & Francis,2002

		October 2020	1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2020-21 Onwards

ShriShankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai) SCHEME OF EXAMINATION AND SYLLABUS

SEMESTER 1, MTech, MECHANICAL(THERMAL ENGINEERING)

Subject Name & Code	DESIGN OFHEATEXCHA ME229121	NGERS	L = 3	T = 2	P = 0	Credits = 4
Evaluation Scheme	ESE		СТ	ТА	Total	ESE Duration
L'unuation Scheme	100		20	20	140	3 Hours
Course Objectives		Course Out	comes			
 It provides encoded with the exchange selection for Students will different tech analysis. Student will and thermal and thermal and tube, Pla exchanger 	xposure to different kind of ger, their working and a given application. I come to know about miques of heat exchanger be able to learn construction design methodology of shell the and compact heat	On successfi able to: CO1 Apply science, and e exchanger des CO2 Analy Exchanger per CO3 Desig economical, so	ul complet y fundamer ngineering igning. ze theoreti formance n systems ocial, envir	tion of the stal know for the r ically and as per the ronmenta	ne course vledge of needs in h d experim e desired al issues	e, the student will be mathematics, heat nentally Heat needs based on

Unit 1 Introduction: Classification, temperature distribution for parallel flow, counter flow, cross flow, heat exchanger, evaporators and condensers, concept of LMTD and overall heat transfer coefficient. F factors for various flow arrangement, comparison of different methods, NTU method for gauging exchanger performance, LMTD for parallel, counter and cross flow heat exchangers, methods of effectiveness. Important design considerations: material selection and optimization of heat exchangers, analysis, Vibrations induced by flow, International Standards for heat exchangers. CO1 [7 Hrs.]

- Unit 2 Design considerations: Design methodology, Selection criteria, general selection guide lines, thermodynamic modeling and analysis, optimization, irreversibility's, heuristic approach for assessment, energy, exergy and cost balances in the analysis of heat exchangers, fouling and corrosion.CO2 [7 Hrs.]
- Unit 3 Shell and Tube heat exchangers Tube layouts, Baffle spacing, types of shell and tube exchangers The calculations of shell and tube exchangers shell side film coefficients shell side equivalent diameter The true temperature difference in a 1-2 exchanger. Influence of approach temperature on correction factory Shell- side pressure drop Tube side pressure drop- Analysis of performance of 1-2 exchangers and design calculation of shell and tube heat exchangers Flow arrangements for increased heat recovery The calculations of 2-4 exchangers TEMA standards.CO3 [8Hrs.]
- Unit 4 Direct-contact heat exchanger, cooling towers Relation between the wet-bulb and dew point temperatures The Lewis number Classification of cooling towers cooling-tower internals and the role of fill Heat exchange heat transfer by simultaneous diffusion and convection Analysis of cooling towers measurements Design of cooling towers Determination of the number of diffusion units Calculation of cooling tower performance The influence of process conditions upon design The influence of operation tables. CO3 [7 Hrs.]
- Unit 5 Compact heat exchangerGasketed, brazed rating and sizing, design considerations, surface geometrics, pressure drop calculations, limiting cases for design. CO4 [6 Hrs.]

		October 2020	1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2020-21 Onwards

ShriShankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai) SCHEME OF EXAMINATION AND SYLLABUS

SEMESTER 1, MTech, MECHANICAL(THERMAL ENGINEERING)

Text Books S. Title Publisher Author(s) No. Kays W.M. and Krieger Compact Heat Exchanger 1 PublishingCompany,1998. London A.L. Rosenhow, Hartnett McGraw Hill Professional 2 Handbook of Heat Transfer and Cho eds Wiley- Interscience. Kraus Aziz and Welty Extended Surface Heat Transfer 3 NewYork.2001

S. No	Title	Author(s)	Publisher
1	Optimization theory and application	Rao S.S.	3 rd Ed.Wiley-Interscience.1996.
2	Compact Heat Exchangers: selection, design and operation	Hesselgreaves J.E.,	Pergamon Press 2001
3	Principles of Enhanced Heat Transfer	Webb R.L. and Kim N.H.,	Taylor andFracis,2005

		October 2020	1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2020-21 Onwards

ShriShankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai) SCHEME OF EXAMINATION AND SYLLABUS

SEMESTER 1, MTech, MECHANICAL(THERMAL ENGINEERING)

Subject Name & Code	ADVANCED FINITE ELEMENT METHOD ME229122	L = 3	T = 2	$\mathbf{P}=0$	Credits = 4
Evaluation Scheme	ESE	СТ	ТА	Total	ESE Duration
L'unuation Scheme	100	20	20	140	3 Hours

Course Objectives	Course Outcomes
1. To learn basic principles of finite element analysis procedure	CO 1Synthesise information and ideas for use in the evaluation process.
2. To learn the theory and characteristics of finite elements that represent engineering structures	CO 2 Develop governing equations of mechanical systems using domain knowledgeand mathematical principles and apply principles of variation and integral forms of solution to formulate finite element problem.
3. To learn and apply finite element solutions to structural, thermal,	CO 3 Analyse and build FEA model for complex engineering problems.
dynamic problem to develop the knowledge and skills needed to effectively evaluate finite element	CO 4 Perceive the fundamental theory of the finite elements.
analyses.	CO 5 Develop skills to model the behavior of structures

UNIT 1 Finite Element Formulation: Introduction, Weighted Residual Method, weak form of WRstatement, Principle of stationary total potential (PSTP), Rayleigh – Ritz Method. CO1 [7 Hrs]

- UNIT 2 One Dimensional Finite Element Analysis: General form of total potential for 1-D and finiteelement equations, Linear bar element, Quadratic bar element, Cubic bar element, Higherorder elements, Beam Element, Frame elements, Applications of one dimensional elements, Natural co- ordinates and Co-ordinate transformation, Numerical integration.CO2 [8 Hrs.]
- UNIT 3 Two Dimensional Finite Element Analysis: Introduction, Simple three nodded triangularelement, four nodes rectangular element, six nodes triangular element, serendipity and higher order 2-D elements, Iso-parametric element.CO3 [7 Hrs.]
- **UNIT 4** Axisymmetric elements, Structural mechanics applications of 2-D and axisymmetricelements, Incorporation of Boundary conditions, Solution of static Equilibrium Equations.Heat transfer applications in 2-D.CO4 [6 Hrs.]

UNIT 5 Dynamic AnalysisIntroduction, Equations of motion based on weak form and using Lagrange approach, Consistent and lumped mass matrix, Solution of Eigen value problems, transient vibrationAnalysisCO4 [7 Hrs.]

		October 2020	1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2020-21 Onwards

ShriShankaracharya Group of Institutions (An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai) SCHEME OF EXAMINATION AND SYLLABUS

SEMESTER 1, MTech, MECHANICAL(THERMAL ENGINEERING)

Text Books:

S. No.	Title	Author(s)	Publisher
1.	Textbook of Finite Element Analysis	P Sheshu	PHI 2004
2.	Finite Element Methods for Engineers	U S Dixit	Cengage Learning, 2011.

S. No.	Title	Author(s)	Publisher
1.	. Concepts and Application of Finite Elements Analysis	, Cook, Malkus and Plesha	Wiley.
2.	Finite Element Methods for Engineers	J N Reddy	McGraw Hill International Edition

		October 2020	1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2020-21 Onwards

ShriShankaracharya Group of Institutions (An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai) SCHEME OF EXAMINATION AND SYLLABUS

Subject Name & Code	ADVANCED I C ENGINE ME229123	L = 3	T = 2	P = 0	Credits = 4
Evaluation Scheme	ESE	СТ	ТА	Total	ESE Duration
L'unuation Scheme	100	20	20	140	3 Hours

Co	urse Objectives	Course	Outcomes
То	make the student understand		
1.	Engine operating parameters like fuel-air mixtures, temperature and cycles	CO1	Apply knowledge of mathematics, science, and engineering for the needs in I.C.Engine.
2.	supercharging, turbo charging and flow through ports and valves	CO2	Analyze different I C engine systems and its design
3.	combustion process in SI engine and CI engine and emissions formation during the combustion cycle and their treatment.	CO3	Evaluate the performance of I.C. Engines under different conditions and interpret the reports.
4.	metering and flow of charge in SI engines 5.modern trends in IC engines		
UNI	T 1 Introduction – Historical Review – Engi	ine Types	– Design and operating Parameters. Cycle Analysis:
	Thermo-chemistry of Fuel – Air mixtur	es, proper	ties - Ideal Models of Engine cycles - Real Engine
	cycles - differences and Factors responsi	ble for – (Computer Modeling. CO1
	GAS EXCHANGE PROCESSES: Volu	imetric Ef	ficiency - Flow through ports - Supercharging and
	Turbo charging. Charge Motion: Mean	velocity a	and Turbulent characteristics – Swirl, Squish – Pre-
	chamber Engine flows. [8Hrs.]		
UNI	T 2 ENGINE COMBUSTION IN S.I ENGI	NES: Cor	nbustion and Speed – Cyclic Variations – Ignition –
	Abnormal combustion Fuel factors, MPI	FI, SI engi	ne testing.CO 2 [7 Hrs.]
	COMBUSTION IN CI ENGINES: Es	sential Fe	atures - Types off Cycle. Pr. Data - Fuel Spray
	Behavior – Ignition Delay – Mixing For	mation and	d control, Common rail fuel injection system.
UNI	T 3 POLLUTANT FORMATION AND CO	ONTROL:	Nature and extent of problems - Nitrogen Oxides,
	Carbon monoxide, unburnt Hydrocarbo	n and par	ticulate - Emissions - Measurement - Exhaust Gas
	Treatment, Catalytic converter, SCR, Pa	rticulate T	raps, Lean, NOx, Catalysts. CO3 [7 Hrs.]

		October 2020	1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2020-21 Onwards

ShriShankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai) SCHEME OF EXAMINATION AND SYLLABUS

SEMESTER 1, MTech, MECHANICAL(THERMAL ENGINEERING)

UNIT 4 ENGINE HEAT TRANSFER: Importance of heat transfer, heat transfer and engine energy balance, Convective heat transfer, radiation heat transfer, Engine operating characteristics. Fuel supply systems for S.I. and C.I engines to use gaseous fuels like LPG, CNG and Hydrogen.CO3 [7 Hrs.]

UNIT5MODERN TRENDS IN IC ENGINES: Lean Burning and Adiabatic concepts, Rotary Engines, Modification in I.C engines to suit Bio – fuels, HCCI and GDI concepts.**CO3** [6 Hrs.]

Text Books:

S. No.	Title	Author(s)	Publisher
1.	I.C. Engines	V. Ganeshan	TMH publications
2.	I.C. Engines Fundamentals	Heywood	TMH publications
3.	I.C. Engines	G.K. Pathak& DK Chevan	Standerd Publications

S. No.	Title	Author(s)	Publisher
1.	I.C. Engines	R K Rajpoot	Laxmi publications
2.	Computer Simulation of C.I. Engine Process	V. Ganeshan	University Press

		October 2020	1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2020-21 Onwards

ShriShankaracharya Group of Institutions (An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai) SCHEME OF EXAMINATION AND SYLLABUS

Subject Name & Code	NON CONVENTIONAL ENERGY SYSTEMS ME229124	L = 3	T = 2	P = 0	Credits = 4
Evaluation Scheme	ESE	СТ	TA	Total	ESE Duration
L'unuation Scheme	100	20	20	140	3 Hours

Course Objectives	rse Objectives Course Outcomes						
 To make students cap Apply knowl and enginee conventional Analyze th systems for feasible impa Design & 	bable to: ledge of mathematics, sc ring for the needs in energy systems. le nonconventional e their feasibility and act	energy socio cO3 system	 CO1 Apply knowledge of mathematics, science, and engineering for the needs in non conventional energy systems. CO2 Analyze the nonconventional energy systems for their feasibility and socio feasible impact CO3 Design & develop different types of renewable energy systems. 				
renewable en	ergy systems.						
Unit 1 Solar estin	r Radiation: Solar thermanation of average solar ra	ll process, he diation.CO1	at transfer de [6 Hrs.]	evices, solar radiat	tion measurement,		
Unit 2 Solar stora pond Solar	r energy collection & stor ge, comparison, Hot wat l, extraction of thermal er r Power generation CO 2	rage: Solar w er system, pr nergy and ap [7 Hrs.]	vater heating, actical consid plication of s	Air heater, stratif deration, solar por olar ponds, Solar	fied storage, well mixed nds, Non-convective solar distillation & drying,		
Unit 3 Biom anim gas, j perfo	Biomass Energy System: Photosynthesis, Biomass resource, Availability of biomass-agro, forest, animal, municipal and other residues; bioconversion technologies; cooking fuels, biogas, producer gas, power alcohol from biomass; power generation, Internal engine modifications and performance; system economics. CO3 [7 Hrs.]						
Unit 4 Wind Poter farm	d energy: The nature of w ntial, Wind energy resour s, performance and econo	vind & wind rces and mod omics of win	data, Wind n leling, Horizo d energy. CO	neasurement, Aero ontal and Vertical 03 [7 Hrs.]	ofoil Design, Wind energy Axis Wind mills, wind		
Unit 5 OTE energ avail site s conc	C: Ocean temperature di gy: fundamentals, availab ability, Tidal-energy con selection, origin and type epts. CO3 [7 Hrs.]	fferences, OT bility, wave e version syste s of geothern	TEC systems, nergy, conve ems. Geother nal energy an	. Recent OTEC de ersion systems: Ti mal energy: Hot s id utilization, pow	evelopments. Wave dal energy: fundamentals, springs and steam ejection, ver plants, advance		
		October	2020	1.00			

		October 2020	1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2020-21 Onwards

ShriShankaracharya Group of Institutions (An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai) SCHEME OF EXAMINATION AND SYLLABUS

SEMESTER 1, MTech, MECHANICAL(THERMAL ENGINEERING)

Text B	ooks:			
S. No. Title		Title	Author(s)	Publisher
	1.	Solar Energy Principle of Thermal Collection and Storage	Sukhatme	Tata McGraw Hill, 1990
	2.	Wind Energy Systems, Prentice Hall Inc., New Jersey	Johnson G.L	Prentice Hall Inc., New Jersey
	3.	Principles of Solar Engineering	J.M. Kriender,	McGraw Hill, 1987

S. No.	Title	Author(s)	Publisher
1.	Solar Engineering	Mangal V. S.	Tata McGraw Hill, 1992
2.	Renewable Energy Source and Conversion Technology	Bansal N. K.	Tata McGraw Hill, 1989
3	Solar Thermal Engineering	P.J. Lunde,	John Wiley & Sons, New York, 1988

		October 2020	1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2020-21 Onwards

ShriShankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai) SCHEME OF EXAMINATION AND SYLLABUS

Subject Name & Code	SOLAR ENERGY UTILIZATION ME229125	L = 3	T = 2	P = 0	Credits = 4
Evaluation Scheme	ESE	СТ	ТА	Total	ESE Duration
	100	20	20	140	3 Hours

Co	urse Objectives	Course Outcomes
Afte able •	er studying this course, student should be e to: Explain the principles that underlie the ability of various natural phenomena to deliver solar energy Outline the technologies that are used to harness the power of solar energy	 CO1 Design and analyze of working effect of related parameters of solar flat plate collectors. CO2 Understand and analyze interrelated parameters and various heat transfer involved within a of solar Distillation units CO3 Develop mathematical model and evaluate heat transfer involved in solar Drying/Cookers CO4 Understand working, Modelling, application, types and parametric studies of solar air heaters
•	Discuss the positive and negative aspects of solar energy in relation to natural and human aspects of the environment.	CO5 Analyze the economic analysis of solar thermal equipment that includes payback period, deprecation etc.
	UNIT 1 Introduction: Solar thermal pro- estimation of average solar radiation Material involved, Losses, its O performance, Evolution of evacuate	bcess, heat transfer devices, solar radiation measurement, on. Flat Plate Collectors-Introduction, Classification, Evolution, ptimization, various heat transfer coefficients, Testing and ed tubes solar collector. CO1 [7 Hrs.]

- UNIT 2 Solar Distillation. Introduction, working principle, Thermal efficiency, Instantaneous. efficiency, Overall thermal efficiency, Heat transfer, External heat transfer, Top loss coefficient, Bottom and Side loss coefficient, Internal heat transfer, Radiative loss coefficient, Convective loss coefficient, Evaporative loss coefficient, Determination of distillate output, Passive solar stills, Effect of various parameters, Other designs, Modified internal heat transferCO2 [7 Hrs.]
- UNIT 3 Solar Crop Drying and Cooker.Introduction, Working principal, Classification, Energy Balancing, Modeling, Moisture content, Drying characteristics curves, Energy requirement, Designing Solar cooker: Working, Comparison, various phases of cooking, various shapes, Performance evaluationCO3 [7 Hrs.]
- UNIT 4 Solar Air Heaters. Description and classification, Conventional heaters, Double exposure heaters, Air heaters with flow above and both sides of the absorbers, Two pass solar air heater, Heater with finned absorber, Yee-Corrugated absorber, Reverse absorber heater, with porous absorber, Testing of solar air collector, Parametric studies, Application of air heaters, Comparison and performance of liquid and air collectorCO4 [7 Hrs.]
- UNIT 5 Economic Analysis of Solar Equipments. Introduction, Cost analysis, Cash flow diagram, Cost comparison with equal and unequal duration, Payback time with and without interest, Benefit cost analysis, Affect of depreciation, Cost comparison after taxes. CO5 [7 Hrs.]

		October 2020	1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2020-21 Onwards

ShriShankaracharya Group of Institutions (An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai) SCHEME OF EXAMINATION AND SYLLABUS

SEMESTER 1, MTech, MECHANICAL(THERMAL ENGINEERING)

Text Books:

oons.			
S. No.	Title	Author(s)	Publisher
1.	Solar energy	G. N. Tiwari	Narosa Publication
2.	Solar distillation practice for water desalination systems	G.N. Tiwari and A.K. Tiwari,	Anamya publishers.
3.	Solar Energy Principle of Thermal Collection and Storage	Sukhatme	Tata McGraw Hill, 1990

S. No.	Title	Author(s)	Publisher
1.	Solar Thermal Engineering	P.J. Lunde,	John Wiley & Sons, New York, 1988
2.	Principles of Solar Engineering	J.M. Kriender,	McGraw Hill, 1987

		October 2020	1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2020-21 Onwards

ShriShankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai) SCHEME OF EXAMINATION AND SYLLABUS

SEMESTER 1, MTech, MECHANICAL(THERMAL ENGINEERING)

Subject Name & Code	POWER PLANT ENGINEERING ME229126	L = 3	T = 2	P = 0	Credits = 4
Evaluation Scheme	ESE	СТ	ТА	Total	ESE Duration
	100	20	20	140	3 Hours

	Course Objectives	Course Outcomes
1.	Analyze different types of steam cycles and estimate efficiencies in a steam	On Successful completion of course student will be able to
2.	power plant Describe basic working principles of gas turbine and diesel engine power plants.	CO1 Apply the principles of thermodynamics to analyze the performance of steam, gas, combined and modern power plants
3. 4.	Define the performance characteristics and components of such power plants List the principal components and types of nuclear reactors	CO2 Design and develop power plant components for optimum performance
5.	Evaluate cycle efficiency and performance of a gas cooled reactor power plant	CO3 Select appropriate site and technology for hydroelectric and nuclear power plants.
6.	Classify different types of coupled vapor cycles and list the advantages of combined cycles power plant	CO4 Evaluate economic and environmental implications on power plants

UNIT 1 Introduction: Energy resources and their availability, types of power plants, selection of the plants, review of basic thermodynamic cycles used in power plants. CO1 Steam Power Plants: Flow sheet and working of modern-thermal power plants, super critical pressure steam stations, site selection, coal storage, preparation, coal handling systems, feeding and burning of pulverized fuel, ash handling systems, dust collection-mechanical dust collector and electrostaticprecipitator.[7 Hrs.]

UNIT 2 Steam generators and their accessories: High pressure Boilers, Accessories, Fluidized bed boiler.CO2

Condensers: Direct Contact Condenser, Surface Condensers, Effect of various parameters on condenser performance, Design of condensers, Cooling towers and cooling ponds

Combined Cycles: Constant pressure gas turbine power plants, Arrangements of combined plants (steam & gas turbine power plants), re-powering systems with gas production from coal,using PFBC systems, with organic fluids, parameters affecting thermodynamic efficiency of combinedcycles.[8 Hrs.]

UNIT 3 Hydro Electric Power Plants: Rainfall and run-off measurements and plotting of various curves for estimating stream flow and size of reservoir, power plantsdesign, construction and operation of different components of hydro-electric power plants, site selection, comparison with other types of

		October 2020	1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2020-21 Onwards

ShriShankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai) SCHEME OF EXAMINATION AND SYLLABUS

SEMESTER 1, MTech, MECHANICAL (THERMAL ENGINEERING)

powerplants.CO3, [6 Hrs.]

- **UNIT 4 Nuclear Power Plants:** Principles of nuclear energy, basic nuclear reactions, nuclear reactorsPWR, BWR, CANDU, Sodium graphite, fast breeder, homogeneous; gas cooled. Advantages and limitations, nuclear power station, waste disposal.**CO3**, [6 Hrs.]
- **UNIT 5 Power Plant Economics**: load curve, different terms and definitions, cost of electrical energy, tariffs methods of electrical energy, performance & operating characteristics of power plants-incremental rate theory, input-output curves, efficiency, heat rate, economic load sharing,Problems. **.CO4, [7 Hrs.]**

Text Books:

S. No.	Title	Author(s)	Publisher
1.	Power plant engineering	Arrora&Domkundwar	DhanpatRai& Sons, New Delhi, 2008
2.	Power plant Technology	M.M. Ei-Wakil	McGraw Hill Com.,1985
3.	Power plant engineering	PCSharma'	S.K.Kataria& Sons NewDelhi,2010

		October 2020	1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2020-21 Onwards

ShriShankaracharya Group of Institutions

(An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai) SCHEME OF EXAMINATION AND SYLLABUS

SEMESTER 1, MTech, MECHANICAL(THERMAL ENGINEERING)

Subject Name & Code	EXPERIMENTS IN THERMAL ENGINEERING LAB 1 ME229191		T = 0	P = 4	Credits = 2
Evaluation Scheme	ESE	СТ	ТА	Total	ESE Duration
Evaluation Scheme	100	20	20	140	3 Hours

Course Objectives		Course Outcomes		
Cour 1.	se Objectives To introduce the students about the techniques used to measure properties of various substances.	CO	1 Conduct experiments on conduction, convection and radiation of heat; collect data, perform analysis and interpret results to draw valid conclusions through	
2.	To educate the student about use of numerical techniques and commercial tools available for analysis of thermal system.	со	standard test procedures.2 Develop to gain basic knowledge on Fluid Statistics, Fluid Dynamics, and closed conduit flows, hydro- closetria power stations.	
3.	To prepare the student to do experiment and calculate the various parameters in the field of Fluid Mechanics, Heat Transfer.	CO	3 Student will be able to design various components of pumps and turbines and study their characteristics.	
4.	To train the students to analyze the performance of various thermal systems systems.			

Group I.- Heat and Mass Transfer CO 1

- 01 Determination of thermal conductivity: Composite wall apparatus
- 02 Determination of thermal conductivity- Solids.
- 03 Determination of thermal conductivity- fluids
- 04 Determination of forced convection heat transfer coefficient
- 05 Determination of free convective heat transfer coefficient
- 06 Determination of Emissivity of a given surface
- 07 Heat transfer through extended surfaces.
- 08 Determination of Stefan –Boltzmann constant: Stefan –Boltzmann Apparatus
- 09 Pool Boiling and critical heat flux
- 10 Performance study of cooling tower
- 11 Unsteady state heat transfer apparatus.

Group II - Fluid MechanicsCO 2, CO 3

- 12 Measurement of lift and drag force of Aerofoil model, symmetric or asymmetric model on wind tunnel.
- 13 Prediction of boundary layer thickness over flat plate
- 14 Trial on Centrifugal (parallel / series) pump.
- 15 Trial on Pelton/Francis Turbine

Note: Any 12 Experiments to be conducted (Minimum 2 from each group)

		October 2020	1.00	Applicable for AY	
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2020-21 Onwards	

ShriShankaracharya Group of Institutions (An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai) SCHEME OF EXAMINATION AND SYLLABUS

Subject Name &	EXPERIMENTS IN THERMAL		$\mathbf{L} = 0$	T = 0	P = 4	Credits = 2
Code	ENGINEERING LAB 2 ME229192					
Evaluation Scheme	ESE		СТ	TA	Total	ESE Duration
	100		20	20	140	3 Hours
Course Objectives		Course Out	comes			
Course Objectives		After the com	pletion of	the cours	se, studen	ts should be able to
1. To educate the s	tudent about use of simulation	CO 1. Identif	u the verie	us fuel e	horostari	zations through
2 To prepare the	student to do experiment and		y the vario	us fuel c	naracteri	zations unrough
calculate the vari	ious parameters in the field of	experime		g.		
heat transfer, refr	rigeration and air conditioning,	CO 2: Analyz	the perfo	ormance	character	ristics of an internal
IC engine.		combusti	ion engine	S		
3. To analyze the	performance of various fluid	CO 3: Evalua	te the perf	ormance	paramete	ers of refrigeration
systems		systems				
4. To develop skills	to perform the experimentation	CO4 : Analyze	e the air co	mpresso	r charact	eristics and other
	e neid of thermal systems	power pl	ant system	IS.		
GroupI -I C.	Engine.		<u> </u>			CO 1, CO 2
1.	Trial on 2-Stroke Engine.					,
2.	Trial on 4-Stroke Engine.					
3.	Trial on Kirloskar Engine – B	io fuel and varia	able CR.			
4.	Thermal analysis of IC engine	2.				
5. C H D	Design of IC engine					CO 2
Group II - Re	Trial on refrigeration tutor					003
0.	Trial on cascade system					
8	Trial on ICE plant					
9.	Design/Simulation of refriger	ation systems.				
10.	Design/Simulation of compre	ssors				
11.	Performance study of Cold ro	om				
12.	Trial on multi evaporator syst	em				
13.	Performance study of refriger	ation system usi	ing differen	t types of	heat exch	angers.
14. Trial on Fault simulator						
15.	Trial on water cooler	• • • •				
10 Crown III Stor	enic system.				CO 4	
16 Trial on Steam power plant						04
17. Design/Simulation of a thermal system such as gas turbine systems, steam power plant					ower plant	
18. Design/Simulation of thermal system components such as heat Exchanger					o ii or prano	
19. Design/Simulation of pumps						
20. Design / simulation of solar thermal system. Gr. IV Air-Conditioning						
21.	21. Trial on Air Conditioning Tutor					
22.	Design / simulation of Flow t	hrough duct.				
23. Design / simulation of air conditioning systems						
24.	I rial on Central AC plant		ah anawa)			
Note:Any 12 E	xperiments to be conducted(Mini	mum 2 from eac	cn group)			

		October 2020	1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2020-21 Onwards

ShriShankaracharya Group of Institutions (An Autonomous Institute affiliated to Chhattisgarh Swami Vivekanand Technical University Bhilai)

SCHEME OF EXAMINATION AND SYLLABUS

		October 2020	1.00	Applicable for AY
Chairman (AC)	Chairman (BoS)	Date of Release	Version	2020-21 Onwards